
AWeak Supervision-Based Approach to Improve Chatbots for
Code Repositories
FARBOD FARHOUR, Concordia University, Canada
AHMAD ABDELLATIF, University of Calgary, Canada
ESSAM MANSOUR, Concordia University, Canada
EMAD SHIHAB, Concordia University, Canada

Software chatbots are growing in popularity and have been increasingly used in software projects due to their
benefits in saving time, cost, and effort. At the core of every chatbot is a Natural Language Understanding
(NLU) component that enables chatbots to comprehend the users’ queries. Prior work shows that chatbot
practitioners face challenges in training the NLUs because the labeled training data is scarce. Consequently,
practitioners resort to user queries to enhance chatbot performance. They annotate these queries and use
them for NLU training. However, such training is done manually and prohibitively expensive. Therefore, we
propose AlphaBot to automate the query annotation process for SE chatbots. Specifically, we leverage weak
supervision to label users’ queries posted to a software repository-based chatbot. To evaluate the impact of
using AlphaBot on the NLU’s performance, we conducted a case study using a dataset that comprises 749
queries and 52 intents. The results show that using AlphaBot improves the NLU’s performance in terms of
F1-score, with improvements ranging from 0.96% to 35%. Furthermore, our results show that applying more
labeling functions improves the NLU’s classification of users’ queries. Our work enables practitioners to focus
on their chatbots’ core functionalities rather than annotating users’ queries.

CCS Concepts: • Software and its engineering→ Software libraries and repositories; Software nota-
tions and tools.

Additional Key Words and Phrases: Software Chatbots, Weak Supervision, and Data Augmentation

ACM Reference Format:
Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab. 2024. A Weak Supervision-Based
Approach to Improve Chatbots for Code Repositories. Proc. ACM Softw. Eng. 1, FSE, Article 105 (July 2024),
24 pages. https://doi.org/10.1145/3660812

1 INTRODUCTION
Numerous chatbots assist software practitioners in daily development tasks such as code conflict
resolution [41], answering software development questions using Stack Overflow [54], managing
tasks [65], and assisting newcomers in the onboarding to new projects [19]. The broad adoption of
chatbots in the SE domain is mainly due to the cost and time savings, increasing task completion
rate, and recent advances in artificial intelligence and natural language processing (NLP) [4, 62].

Natural language understanding (NLU) is the backbone component in every chatbot as it allows
chatbots to understand user’s input [1]. NLUs use machine learning (ML) and NLP to extract
structured information (the user’s intent from the query and related entities) from the unstructured

Authors’ Contact Information: Farbod Farhour, Concordia University, Montreal, Canada, farbod@farhour.com; Ahmad
Abdellatif, University of Calgary, Calgary, Canada, ahmad.abdellatif@ucalgary.ca; Essam Mansour, Concordia University,
Montreal, Canada, essam.mansour@concordia.ca; Emad Shihab, Concordia University, Montreal, Canada, emad.shihab@
concordia.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART105
https://doi.org/10.1145/3660812

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0003-1637-9898
HTTPS://ORCID.ORG/0000-0003-1863-9147
HTTPS://ORCID.ORG/0000-0001-6851-6351
HTTPS://ORCID.ORG/0000-0003-1285-9878
https://doi.org/10.1145/3660812
https://orcid.org/0000-0003-1637-9898
https://orcid.org/0000-0003-1863-9147
https://orcid.org/0000-0003-1863-9147
https://orcid.org/0000-0001-6851-6351
https://orcid.org/0000-0003-1285-9878
https://doi.org/10.1145/3660812


105:ii Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

input query. There are many off-the-shelf NLUs that developers can easily use and integrate into
their chatbot implementation instead of developing one from scratch. For example, MSRBot [2]
uses Dialogflow NLU to answer software project-related questions. MSABot [31] uses Rasa NLU to
assist developers in managing microservices.
The main bottleneck of using any NLU is the need for training data. This is because chatbot

developers need to train the NLU using various queries where a user can express her intention. For
example, the queries “What is the fixing commit for issue 5?” and “Show me the resolution commit
for bug 5” have the same semantic (determining the fixing commits for a certain bug) but different
structures. Prior work shows that proper NLU training improves the chatbot’s ability to respond
to queries correctly [8, 23, 30]. In other words, training NLUs with many queries is of paramount
importance since it allows the NLU to better classify the user’s query [1, 2]. However, previous
studies point out that crafting and collecting training data is a challenging task [2, 4, 19, 24, 32].
For example, Dominic et al. [19] reported that the main limitation of training their chatbot is the
small size of the training dataset. Moreover, collecting more training queries is a time-consuming
task. There are several posts on Stack Overflow where chatbot practitioners ask about sources
to train the NLU [28, 58, 66]. One way to obtain more training data is to learn directly from the
human-chatbot conversation. In other words, the chatbot developers need to manually monitor and
annotate the user’s input and re-train the NLU on this new annotated data. In fact, many chatbot
practitioners and NLU owners recommend using this process, especially in the early releases of
the chatbot, as it is trained on a few training queries [35, 47]. Applying this process in practice
is a time-consuming task and introduces additional costs because it requires the dedication of a
domain expert (e.g., medical practitioners) to manually annotate users’ queries. In fact, there are
large companies (e.g., Google, Amazon, IBM) who hire a full team to label training data for their
products [15, 17, 38].

In recent years, researchers have proposedweak supervision approaches, part of machine learning
that combines knowledge from weakly labeled data (user’s input to the user-chatbot conversation)
to improve the chatbot’s performance. In particular, they use heuristics/rules to label the queries and
re-train the machine learning model using these weakly labeled (noisy) data to improve the model’s
performance [24, 32, 40, 69]. For example, Hancock et al. [24] developed a self-feeding approach to
train a chit-chat chatbot on the posed query if the user’s satisfaction with the chatbot response
is above a certain threshold. Mallinar et al. [32] developed a weak supervision based framework
that allows chatbot developers to search for training queries from the previous conversations, then
assign labels to them using weak supervision. They evaluated the proposed approach on a customer
service chatbot that has six intents. Oramas et al. [40] proposed a heuristic weak supervision
approach to label voice query logs. They evaluated the approach using actual voice traffic from a
music streaming service. While these approaches help address the issue of manually labeling the
data, none of these approaches target chatbots that operate in the SE domain. SE is a specialized
domain that contains special terminologies used in a particular way. For example, in the SE domain,
the word ‘bug’ refers to an issue in a bug tracking system (e.g., Jira), while in other domains, it is
related to an insect. Furthermore, some approaches require a lot of data to run since they depend on
deep learning models, which makes these approaches inapplicable for SE chatbots due to the lack of
training data [2, 4, 19]. On the other hand, there are approaches that require human interventions
to run them. Finally, these approaches are evaluated to limited datasets with a few intents.

To address this gap, we present AlphaBot, a weak supervision-based approach to automatically
annotate the intents of users’ queries for the SE chatbots. AlphaBot contains three main components,
a data preprocessing component, meant to preprocess and remove the noise from the user’s
query; a query information extractor component, which extracts important information from
the query that helps to identify the intent of the query; and an intent labeler component, that

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:iii

Users Chatbot NLU Platform Annotator

Query Query

Intent & EntityResponse Query 
Annotation

Fig. 1. Motivating example overview of user-chatbot interaction.

uses weak supervision (i.e., labeling functions) and information extracted from the query by the
previous component to assign an intent for the query. It is important to note that all the steps in
the AlphaBot’s components are fully automated except constructing the labeling functions, which
is done manually by a domain expert. To evaluate the proposed approach, we perform an empirical
study using a dataset of a chatbot, called AskGit [3], which answers questions related to software
repositories (e.g., “How many commits in the dev branch?”). The dataset contains 749 queries that
represent 52 intents. More specifically, our study answers the following research questions:

RQ1: Does AlphaBot improve the NLU’s performance? Our results show that AlphaBot,
which uses labeling functions (i.e., rules and heuristics), annotates more than 99% of queries cor-
rectly on average. Furthermore, we find that using AlphaBot improves the NLU’s performance in
terms of F1-score (0.96% - 35% F1-score improvement), especially when the NLU is trained with a
few number of queries. And the performance improvement decreases as the NLU becomes more
robust, i.e., trained on a large dataset.

RQ2: What is the impact of the number of labeling functions on performance? The results
show that NLU’s performance is proportional to the number of applied labeling functions (e.g.,
heuristics). In other words, adding more labeling functions tends to increase the NLU’s performance
in terms of the F1-score. This is clearly shown when the NLU is trained with a small-sized dataset
at early releases of the chatbot compared to when it is more robust (i.e., trained with many queries).

Our Contributions. To this end, this paper makes the following contributions:
• We propose a weak supervision-based approach to automate the labeling process of the user
queries’ intent for chatbots in the SE domain.

• We conduct an empirical study to evaluate our approach where we examine the performance
of open-source (Rasa) and closed-source (Dialogflow) NLUs when applying AlphaBot. Fur-
thermore, we explore the impact of adding more labeling functions on the performance trend
of the NLU.

• We make our approach implementation and datasets publicly available [6] to enable replica-
tion and accelerate future research in the field.

Paper Organization. The rest of the paper is organized as follows. Section 2 provides an overview
of the chatbots architecture and discusses a motivating example. Section 3 details our approach and
its components. We describe our case study design to evaluate AlphaBot in Section 4. We report our
results in Section 5. We discuss our findings in Section 6. Section 7 discusses the threat to validity.
Section 8 presents the related work to our study and Section 9 concludes the paper.

2 BACKGROUND ANDMOTIVATING EXAMPLE
Before diving deeper into our study, we provide an overview of how a chatbot works. Figure 1
presents an overview of a user-chatbot interaction. In this example, we opt to use a simplified
chatbot architecture for illustration purposes, which has fewer components compared to full chatbot
architecture [2]. Initially, the user asks the chatbot a question via natural language (e.g., “Who fixed

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:iv Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

Fig. 2. An example of user’s queries recorded by Rasa with their classified intents.

issue 5?”). The chatbot forwards the user’s query to the NLU to extract the intent (which represents
the user’s intention of the question) and the entities (which represent pieces of information in the
query). In the query “Who fixed issue 5?”, the intent is to determine the developer that fixed the bug
(DeveloperFixIssue intent), and the entity is “bug ticket 5” of type IssueNumber. Next, the NLU sends
all extracted information back to the chatbot. Finally, the chatbot uses this information to query
the database/API to answer the user’s query and return the response to the user. We note that the
chatbot’s responses are fully dependent on the extracted information by the NLU. In other words,
if the NLU misclassifies the intent of a user’s query, then the chatbot executes a wrong command,
which leads to an incorrect response. Thus, it could negatively impact the user experience with the
chatbot [30].
As discussed in the previous section, chatbot practitioners suffer from a lack of data to train

their chatbots. Moreover, prior work shows that NLUs perform better when they are trained on
more data [1]. Therefore, to improve the NLU’s accuracy, many NLUs record the users’ queries
and their extracted intents and entities (e.g., Google Dialogflow [18] and Microsoft LUIS [36]) to
be examined by chatbot developers. In other words, the annotator (e.g., developer, domain expert)
monitors the posed queries and the NLU extracted information (i.e., intent and entities) to ensure the
correct extraction of the intent. In case of misclassified queries, the annotator manually annotates
them with their correct intents. Then, those annotated queries are augmented with the queries
in the original training dataset. Finally, the NLU is retrained on the queries in the augmented
dataset. Many NLUs recommend this process to improve the NLU’s performance in classifying the
queries correctly [35, 47], especially at early releases of the chatbot by training the NLU on the
data from chatbot users. Moreover, NLUs provide an interface to ease the manual annotation and
retraining of the NLU (e.g., Dialogflow). Figure 2 presents a GUI provided by Rasa that displays
the users’ posed queries and their classified intents. The annotator needs to manually examine
each query and confirm the classified intent in case it is correct, otherwise change the misclassified
intent of a query to the correct intent. Also, the figure presents an example of queries stored by
Rasa NLU with their classified intents and the classification confidence score, which presents how
confident the NLU is in its intent classification, and it varies from 0 (i.e., not confident) to 1 (i.e.,
fully confident). For example, Rasa classified “How many commits in total does the repository
have?” as CommitsCount intent with a 0.8 confidence score. From the figure, we observe that
Rasa misclassifies “Who added the file main.js?” with ProjectCollaborators with a high confidence

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:v

score of 0.87 while correctly classifying “Who closed issue 82?” as IssueCloser intent with a low
confidence score (0.56). Consequently, the domain expert (annotator) needs to correct Rasa’s intent
classification of the “Who added the file main.js?” query to FileCreator intent and confirm the intent
classification of the “Who closed issue 82?” query. This process is a burden and time-consuming
because the chatbot developers need to dedicate time and effort to annotate each query posed to the
chatbot to enhance the NLU’s performance. Moreover, it is a costly process as the labeling in some
cases is done by domain experts, e.g., in chatbots that answer medical questions, the annotation is
performed by medical practitioners [52].

AlphaBot aims to help chatbot practitioners improve the NLU’s performance by automating the
annotation process of user’s queries. Thus, it saves time, effort, and reduces the cost of chatbot
development. Moreover, it allows practitioners to focus on the core and chatbot’s critical tasks
rather than annotating the user’s queries.

2.1 Weak Supervision
Weak supervision is a part of machine learning that leverages noisy data to create larger training
sets [49, 63]. More specifically, the practitioners leverage different forms of weak supervision to
label the data. Then, they retrain their supervised models using the labeled data to enhance the
performance of their models. There are different forms of weak supervision:

• Heuristics: Use rule-based technique to identify the class (or intent) to which the queries
belong [71]. In other words, we determine the intent of a query if it has a specific key-
word or pattern. For example, the intent of “Show me the refactor classes in my project” is
RefactoredClasses intent because it has the word ‘refactor’, which is associated only with
RefactoredClasses and not shared with other intents.

• Distant supervision: Identify the sentences that contain two entities that have a relation
between them [5, 37]. For example, in the query “Fix NullPointerException in Android Studio”,
the entities ‘NullPointerException’ and ‘Android Studio’ enables us to identify that the user
asks about fixing an exception in Android Studio.

• Crowdsourced: Outsourcing the data annotation task to the crowd where many domain
experts manually label the data [25, 70]. Amazon Mechanical Turk platform1 facilitates the
crowdsourcing tasks.

• Third-party models: Use pretrained machine learning models to label the noisy data [33].
It is important to note that the different weak supervision forms are used to create or expand the

training set from the noisy data to train supervised training models [50, 63]. Consequently, the
trained model (the NLU in our study) becomes more robust because it has been trained on a large
dataset and utilizes more features from the dataset. Also, it helps the model to generalize to new
and unseen queries (i.e., data points), which differs from the rule-based classifiers, making it more
rigid to classify the data points that are covered in their rule only.

3 ALPHABOT
Figure 3 presents an overview of our approach, which automates the labeling of users’ queries
to their corresponding intents. AlphaBot is divided into three main components, namely 1) Data
preprocessing: eliminates the noise in the posed query, 2) Query information extractor: extracts
helpful information (e.g., entities and part of speech) to be used for annotating the query, and
3) Intent labeler: uses the weak supervision-based approach to identify the intent of the query.
AlphaBot takes the user’s queries for the SE chatbot as input, and the output of AlphaBot is the
query with its corresponding intent (i.e., labeled query). Finally, we augment the labeled query to
1https://www.mturk.com

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:vi Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

Users Chatbot NLU Platform

Query Query

Intent & EntityResponse

Intent labeler Query Information 
Extractor

Data 
Preprocessing

AlphaBot

Query
Labelled

Information
Query Clean Text

Fig. 3. An overview of AlphaBot and its components.

the chatbot’s training dataset and retrain the NLU on the augmented dataset to improve the NLU’s
performance. We elaborate on each of these components in the following subsections.

3.1 Data Preprocessing
Data preprocessing is a critical step for NLP tasks [68]. Since weak supervision applies labeling
functions (i.e., heuristic) to the input data, transforming raw text into a more digestible form is
critical to remove the noise from the user’s query. Therefore, the main goal of this component is to
provide a clean text for the next component (Query information extractor). To achieve that, we
perform the steps described below:
Text Preprocessing: As the user’s text comes from user-chatbot interaction (i.e., chat forum), users
might mistakenly add extra spaces or capitalize certain characters. Stop words and punctuation
are other sources of noise that might affect the intent classification of the query. Thus, we remove
extra white spaces, stop words, and punctuation from the query if they exist. This is a common
step for NLP tasks [4, 11, 22, 27].
Remove unnecessary tags: Since chatbots are integrated with third-party chat platforms, these
platforms might append some tags that bias the intent’s labeler component. For example, Slack
adds a User ID tag (e.g., ‘<@U023BECGF>’) to the user message. Thus, we clean all platforms added
tags from the user’s question. Although this step removes the noise introduced by the chatting
platforms (e.g., Slack), the AlphaBot users need to be careful when applying this step because it
depends on the context of the chatbot. For example, if the chatbot answers software development
questions, then the questions might include HTML tags (e.g., <iframe>, <div>).
Expand contractions: Users tend to use contractions on their chat messages that might mislead
the Intent labeler component. This is because it could not extract the exact match of the word in
the message. For example, if a user asks the chatbot: “Who doesn’t have a lot of work to do in the
project”, then the labeling function would not detect the word ‘not’, which labels the query with
OverloadedDev instead of IdleDev intent. Consequently, in this step, we expand all the contractions
in the user’s query.
After eliminating the noise from the input query, we forwarded the clean query to the Query

information extractor component. We detail this component in the following subsection.

3.2 Query Information Extractor
To classify the intent of a query, we need to extract useful information that refers to the correct
intent of a user’s query. In particular, the query information extractor component extracts the
following information:
Entity: Represents an important piece of information in the query (e.g., FileName, DateTime,
DeveloperName, and ProjectName). The entity that exists in a query helps identify the intent [1],
especially if the intents share the same characteristics (e.g., have mutual words in their queries). For
example, if a chatbot supports the GetNumberOfCommits and GetNumberOfCommitsOnSpecificDate

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:vii

intents, and the user asks: “How many commits were pushed to the repository yesterday?”, the
chatbot should return the number of commits that happened yesterday (i.e., GetNumberOfCommit-
sOnSpecificDate intent) because there is a ‘DateTime’ entity (i.e., yesterday) in the query. Besides
identifying the entities in the query, the entity type helps to filter out the irrelevant intents. For
example, if a query has a ‘CommitHash’ entity type, then all the intents related to the repository are
irrelevant (e.g., NumberOfStars, NumberOfForks, and NumberOfDownloads intents). This decreases
the possibility of intents misclassification by reducing the number of possible intents that belong
to the query.
Part-of-Speech (POS): POS for each word in the user’s query is another valuable information
source that helps identify the query’s intent. For example, in the following two chatbot queries,
“List the commits that happened last week” and “Show me the developers that committed code last
week”, the POS of the word ‘commit’ helps to identify the query’s intent. In other words, if the POS
of the word ‘commit’ is a noun, then the query is classified as ListCommits intent. Otherwise, if the
word ‘commit’ is a verb, then the intent is ListContributorsOnSpecificDate intent.
Question Type: The type of WH question (e.g., who, what, or when) plays an important role in
classifying the query’s intent. For example, if the question type in a query is ‘Who’, then the user
asks about a person (e.g., software developer). On the other hand, if the query is a ‘How’ question
type, the user asks about a method to perform a specific task (e.g., “How to create CSS underline
which partially covers the word?” [29]). In addition to the WH question, this step identifies if the
query is a polar question (i.e., Yes/No question). For example, users want to verify something in
their project (e.g., “Is the retailer API up?”). Therefore, we consider the question type in the user’s
query as another indicator of the query’s intent.
After extracting the three pieces of information from the user’s query, we forward them to the

next component for labeling the query with its corresponding intent. Next, we describe the Intent
labeler component.

3.3 Intent Labeler
The main goal of the Intent labeler component is to label the user’s query. The Intent labeler
leverages a weak supervision-based approach to assign intent to the query. Among different types
of weak supervision [73], we formulate the task of labeling the user’s queries with the corresponding
intent as inaccurate weak supervision. In the inaccurate weak supervision, the given label (intent)
to the query is not always the ground truth. This exactly matches our case where the NLU intent
classification for a query is not always the ground truth, especially when it is trained with fewer
training queries [1].

Ratner et al. [51] proposed Snorkel, a system that uses weak supervisiosn to enable practitioners
to programmatically build and manage training datasets without manual labeling. In our study,
we use Snorkel in the Intent labeler component. Snorkel is widely used by large IT companies
(e.g., Microsoft, Google, IBM) and previous studies [7, 10, 20, 42]. Practitioners through Snorkel
can provide higher-level supervision (e.g., heuristics, distant supervision, etc.) through labeling
functions (LFs) that take domain knowledge and resources. Through LFs, practitioners can label
large training datasets in hours or days rather than hand-label them over weeks or months. In
Snorkel, each intent should have at least one LF corresponding with that intent. That said, the LFs
do not have to label every data point [64]. LF is a code snippet that labels subsets of unlabeled
data. For example, Figure 4 shows a LF for ForksCount intent that takes a user’s query posted
to the chatbot as an input and returns the label (ForksCount intent) if the query satisfies all the
conditions inside the LF. More specifically, it checks three conditions in the input query: 1) there
are no entities in the query, 2) the existence of the ’fork’ keyword, and 3) the presence of ’number’
or ’count’ keywords. In case one of the conditions is not fulfilled, the LF returns ‘ABSTAIN’, which

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:viii Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

Learn Python
Python Online Compiler

main.py Shell

# Condition 1: Has no entity.

# Condition 2: Has the word 'fork' in the clean text.

# Condition 3: Has the word 'number', or 'count' in the clean text.

# Intent: ForksCount

@staticmethod

@labeling_function(pre=[preprocess_command.__func__])

def forksCount_1(command):

if LabelingFunctions.has_no_entity(command) \

and \

LabelingFunctions.check_in_clean_text(command, ['fork']) \

and \

LabelingFunctions.check_in_clean_text(command, ['number', 'count']):

return LabelingFunctions._ForksCount

else:

return LabelingFunctions._ABSTAIN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Run

Fig. 4. An LF for the ForksCount intent.

indicates the query is abandoned. There are two reasons for a query to be classified as abandoned
1) the query does not match any of the defined heuristics, or 2) the chatbot does not support the
intent. For example, if there is a chatbot that answers general development questions (e.g., “What
is the difference between ArrayList and LinkedList?”), and the user asks a project-specific related
question (e.g., “What is the number of opened bugs in the project?”), then, in this case, the question
is labeled as abandoned because the chatbot does not support such kinds of questions.
Each query needs to pass through all implemented LFs even if it cannot be detected by the

LFs. Then, each LF returns a label associated with the intent of that LF if the conditions are
satisfied. Otherwise, it returns ‘ABSTAIN’. Based on the returned labels, Snorkel determines the
final label (intent or abstain) for the query. There are two methods that Snorkel uses to finalize
the label of the query: 1) Majority vote: returns the most voted label among all LFs in case it is
not ‘ABSTAIN’. 2) Label model: Snorkel estimates the accuracies and correlation structure of the
LFs using a generative model [51] without accessing the ground truth [9]. Thus, Snorkel weights
the LFs by their true accuracies and eliminates the noise caused by some LFs outputs [51]. The
Label model is recommended if there are many LFs for the same intent and they have significant
correlations/conflicts between these LFs [51]. Otherwise, the Majority model is preferred when
there are few LFs for each intent.
In our study, we consider queries whose intent cannot be identified by the Intent Labeler

component (i.e., all labeling functions return ’ABSTAIN’ for the queries) as abandoned queries. It is
important to note that AlphaBot will not augment the abandoned queries to the original training
dataset2 because the Intent Labeler component does not identify the intent of these queries. Instead,
it will store the abandoned queries in a file to be manually labeled by the annotators. The chatbot
developers can examine the abandoned queries in the file to expand the heuristics (i.e., labeling
functions) or to support more intents that chatbot users demand. After the Intent labeler labels the
query with its corresponding intent, we add the labeled query to the original training dataset and
retrain the NLU on the augmented dataset.

4 EVALUATION SETUP
The main goal of AlphaBot is to improve the NLU’s performance by auto-labeling the user’s queries
posted to the chatbot in the SE domain. To evaluate AlphaBot, we need to select a dataset for
user-chatbot interactions in the SE domain and an NLU platform to measure the performance

2The initial dataset created by the chatbot developers to train the NLU.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:ix

improvement after applying our approach. In this section, we detail our selection of the dataset,
weak supervision framework, NLU platform, and experiment design.

4.1 Dataset
To evaluate the performance of our approach, we opt for a dataset from the AskGit chatbot [3].
AskGit is a chatbot that answers questions related to software projects (e.g., “How many commits
happened during March 2021?”) on Slack. It is published on GitHub Marketplace3 so that prac-
titioners can install it on their software projects. The dataset used to train and evaluate AskGit
was developed by the AskGit developers. Specifically, the developers brainstormed to create the
initial training set for the intents supported by AskGit, representing various ways developers might
inquire about each intent. Then, the AskGit developers piloted the chatbot with four practitioners
from their network to gather additional training queries for each intent, expanding their final
dataset. The AskGit developers employed this dataset to train and evaluate the NLU model of
AskGit. The AskGit dataset contains 749 queries distributed across 52 intents. Furthermore, the
size of the training examples varies among intents and for each individual intent, making this
dataset suitable for evaluating the generalizability of AlphaBot on datasets with varying query
sizes. Table 1 presents a snapshot of ten intents with their descriptions. We made the entire dataset,
distribution of queries, and their length distribution across all 52 intents publicly available [6]. It
is important to note that AskGit’s users can ask the questions in different ways for each intent.
For example, to know the developer who created the bridge.py file in the project, a user could
ask: “Who created this file bridge.py?”, “Show me who created the file bridge.py”, or “Who first
added bridge.py file?”. Those queries represent different ways of asking about the same semantic
(i.e., FileCreator intent). On the other hand, the dataset contains four types of entities, namely 1)
IssueNumber, 2) IssueStatus, 3) FileName, and 4) DateTime. Those entities cover the main artifacts
in the repository. Table 2 shows the distributions for each entity type in the dataset.

Several reasons motivate our selection of the AskGit dataset. To the best of our knowledge, this
dataset is the most comprehensive (regarding the size) dataset that is publicly available for an SE
chatbot. Furthermore, this dataset reflects a realistic situation where software practitioners (e.g.,
project maintainers and managers) ask questions to get information about their software projects
(e.g., “Who is assigned to the largest number of open issues?”). The intents cover various types
of queries related to a code repository (e.g., “Who last changed server.rb?”), issue tracker (e.g.,
“Please provide a report about closed issues in the repository”), a combination of both code and
issue tracker (e.g., “What commits are linked to 3234?”), and software project (e.g., “When was
this repository created?”). This helps to evaluate AlphaBot’s performance for chatbots with many
intents. Finally, it allows us to evaluate the applicability of the AlphaBot by applying it to a chatbot
in production (AskGit).

4.2 NLU Platform
As discussed in Section 2, every chatbot uses an NLU platform to understand the user’s query, i.e.,
extract the intents and entities. There are many off-the-shelf NLUs available online that developers
could use in their chatbot’s implementation, such as Google Dialogflow [18]. Among several NLUs,
we select Rasa platform v2.2.3 [48] for several reasons. Rasa is an open-source NLU and can be run
on a local machine. Therefore, the Rasa implementation stays the same during our experiment.
Moreover, Rasa has been commonly used by prior work to develop SE chatbots [19, 31] which
increases the usability of AlphaBot by the chatbot community. Our approach requires the NLU to
be retrained frequently (e.g., daily) as more users’ queries are in to be labeled. However, training

3https://github.com/marketplace/askgit-io

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:x Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

Table 1. A snapshot of ten intents with their definitions from the AskGit dataset.

Intent Definition Total Avg. Median Min Max

ProjectCollaborators Presents the developer(s) who
contributed to the project.

30 6.6 5.5 4 11

StarCount Presents the number of stars for
the repository.

29 6.7 6 2 12

IssueRelatedCommits Determines the commits linked to
a certain bug.

22 7.1 7 4 13

FileCreator Identifies the developer(s) who
creates a specific file in the repos-
itory.

21 6.3 6 3 11

IssueContributors Determines the developer(s) who
contributes in fixing a specific
bug.

17 6.5 7 3 11

ModifiedFilesPR Identifies the files that are
touched by a specific pull-
request.

12 7.4 7 4 13

ActivityReport Presents statistics about the repos-
itory activities occurred in the last
day (e.g., number of solved bugs).

10 5.7 6.5 2 9

LongestOpenPR Identifies the longest pull-request
which is still opened.

9 8 8 3 11

CommitsCountInBranch Determines the number of com-
mits in a certain branch.

7 7.1 8 4 8

OverloadedDev Identifies overloaded developer(s)
with the highest number of un-
fixed bugs.

6 8.3 8.5 5 11

Table 2. Entities distributions in the AskGit dataset.

Entity name Definition Total

IssueNumber Issue ID number (e.g., issue 564) 192
FileName Name of the file (e.g., map.json, response.java) 29
IssueStatus The status of a GitHub issue (e.g., closed pull request, closed issue) 14
DateTime specific period of time/date (e.g., last 24 hours, yesterday) 9

NLUs is expensive in terms of time and resources, especially when the training dataset is large.
Rasa overcomes the aforementioned issue through incremental learning [67]. Incremental learning
is a method to train the models on the new data and persist the knowledge gained from the original
data [43]. Consequently, incremental learning saves time and computational resources in the case
of training the NLU using large training sets [21]. Using Rasa enables us (and we encourage other
practitioners) to evaluate our approach on larger datasets with minimal computational resources
and time. Finally, Rasa is free and supports multiple languages that enable our study’s replicability
by other researchers.

4.3 Experiment Settings
Before delving into AlphaBot performance evaluation, we describe the configurations used in our
approach for the assessment. This allows the replication of the approach on other datasets. In the
data preprocessing component, we leverage spaCy [61] for text preprocessing and POS tagging in

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:xi

the query. SpaCy is a Python library for NLP tasks. We use Contractions Python library4 to identify
the closest expansion for the contraction in the input text.

For entity extraction in the query information extractor component, we use regular expressions
to extract IssueNumber, IssueStatus, and FileName entities from the query. For example, to extract
the issue number from the query, we check if the query has the word ‘issue’ or its synonyms
(e.g., ‘bug’, ‘ticket’) followed by a number (e.g., ‘issue 5938’). For the DateTime entity, we leverage
Facebook Duckling [46], which uses probabilistic context-free grammar through their pipeline to
extract the DateTime entity. Prior work shows that Facebook Duckling performs well in extracting
the DateTime entity from the user’s query [1].

To develop LFs, the first two authors (domain experts) used their chatbot development expertise
to develop the LFs for all intents in the AskGit dataset (i.e., 52 intents). In particular, each domain
expert independently examined three random queries for every intent in the dataset and the
extracted information (e.g., entity type) by the query information extractor component. Using
the examined queries and the extracted information, they develop heuristics for each intent. For
example, while examining the RepositoryLicense intent, the domain expert finds the intent has no
entity associated with it, and all the examined queries contain the word ‘License’ in it. After each
domain expert developed possible heuristics for each intent in the dataset, they discussed them
to ensure that they are relevant to the intent and do not overlap with heuristics of other intents.
Finally, they implement the heuristics as LFs. The annotators took less than two hours to devise
all the LFs, which is significantly less time-consuming compared to labeling each query in our
dataset under various experimental settings used in the evaluation (e.g., different dataset splits).
Once the LFs for an intent are created, they can be applied to new data as needed. It is important
to emphasize that we exclude the examined queries used to develop the LFs from our evaluation
dataset.

In total, we implemented 70 LFs using Snorkel. Some intents have more than one LF. For example,
OverloadedDev intent has two LFs shown in Figure 5. The first LF in Figure 5a checks the query
against three conditions (e.g., the query starts with ‘Who’) to be classified as OverloadedDev intent
by this LF. Figure 5b demonstrates the second LF that classifies a query as OverloadedDev intent
if a query satisfies both conditions. It is important to note that we configure Snorkel to use the
Majority Vote model to identify the query’s final label (intent) since most of the intents (65%) have
only one LF.

Although our LFs can be applied to a software repository-based chatbot (AskGit), it is important
to note that this is the only manual step that needs to be done by AlphaBot’s users, which is less
time-consuming and resource-intensive than manually labeling each data point in the log. In other
words, the domain expert creates LFs once and applies them to each query that the chatbot receives,
instead of manually labeling the queries on a daily basis.

4.4 Performance Evaluation
To evaluate Rasa’s performance, we calculate the standard classification accuracy measures that
have been used in prior works (e.g., [1, 14]) - precision, recall, and F1-score. In our study, recall is
the percentage of the correctly classified queries to the total number of queries for that intent in
the oracle (i.e., Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 ). The precision is the percentage of the correctly classified queries
to the total number of classified queries for the intent (i.e., Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ). Finally, we combine
both precision and recall using the weighted F1-score that has been used in similar work [1]. More
specifically, we compute the F1-score for each intent and aggregate all intents F1-score (i.e., F1-score
= 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 ) using the weighted average. We consider the classes’ support as weights to

4https://pypi.org/project/contractions

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:xii Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab
Learn Python

Python Online Compiler

main.py Shell

# Condition 1: has_and_has_only([issue_status]).

# Condition 2: is a wh question.

# Condition 3: text starts with who.

# Intent: OverloadedDev

@staticmethod

@labeling_function(pre=[preprocess_command.__func__])

def OverloadedDev_1(command):

if LabelingFunctions.has_and_has_only(command, ['issue_status']) \

and \

LabelingFunctions.is_wh_question(command) \

and \

LabelingFunctions.text_starts_with('who', command):

return LabelingFunctions._OverloadedDev

else:

return LabelingFunctions._ABSTAIN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Run

(a) The first LF for OverloadedDev intent with three conditions.
Learn Python

Python Online Compiler

main.py Shell

# Condition 1: has_and_has_only([issue_status]).

# Condition 2: 'developer' in the clean text of command.

# Intent: OverloadedDev

@staticmethod

@labeling_function(pre=[preprocess_command.__func__])

def OverloadedDev_2(command):

if LabelingFunctions.has_and_has_only(command, ['issue_status']) \

and \

LabelingFunctions.check_in_clean_text(command, ['developer']):

return LabelingFunctions._OverloadedDev

else:

return LabelingFunctions._ABSTAIN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Run

(b) The second LF for OverloadedDev intent with two conditions.

Fig. 5. The two LFs for classifying queries as OverloadedDev intent.

compute the weighted F1-score. Although we evaluate all three measures, we only present the
weighted F1-score in the paper. The precision and recall are available on [6].

5 RESULTS
In this section, we present the results of our case study. For each research question, we detail the
motivation for the question, the approach that we use to answer the question, and the results.

5.1 RQ1: Does AlphaBot improve the NLU’s performance?
Motivation: Since user’s queries are the primary source for the chatbot developers to train
NLUs [35, 47], we want to assess AlphaBot’s performance in labeling those queries. Having a
practical and automated approach helps developers train their chatbots efficiently, especially when
they interact with thousands of users’ queries [56]. Moreover, automating the labeling process
reduces the chatbot development costs (i.e., the cost of annotators to label all the queries from
users) and allows developers to focus on critical tasks in their chatbot implementation rather than
data annotation. Therefore, the main goal of this research question is to determine the impact of
using AlphaBot on the NLU’s performance.
Approach: To achieve this, we follow the approach used by prior work [26, 53], and evaluate Rasa’s
performance before and after applying AlphaBot using the AskGit dataset (discussed in Section 4.1).
Specifically, we randomly split the dataset into three blocks: training, validation, and test sets. We
use the stratified split method to maintain a consistent distribution of intents across all splits (i.e.,
training, validation, and test sets). We train Rasa on the training set only, without augmenting
any queries. This serves as the baseline in our study. To simulate a realistic situation where users
pose questions to the chatbot and the domain experts label the queries to retrain the NLU on them,
we consider the queries in the validation split as users’ inputs to the chatbot, which need to be
annotated by the domain expert. Therefore, we apply AlphaBot to all queries in the validation set.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:xiii

Table 3. Number of queries that are labeled correctly by our weak supervision approach.

Training
split (%)

Testing
split (%)

Validation
split (%)

Correctly labeled /
total no. of queries (%)

10 45 45 263/267 (98.5)
20 40 40 235/237 (99.2)
30 35 35 204/208 (98.1)
40 30 30 176/178 (98.8)
50 25 25 147/148 (99.3)
60 20 20 118/119 (99.2)
70 15 15 86/88 (97.7)
80 10 10 59/59 (100)
90 5 5 8/8 (100)

Each query in the validation set is provided as input to AlphaBot to predict its intent. Subsequently,
we merge the output of AlphaBot (i.e., labeled queries) with the training set to train Rasa; we refer
to this model as AlphaBot_Rasa. Finally, we use the test set to evaluate the performance of both
the baseline and AlphaBot_Rasa.

To assess the AlphaBot effectiveness when it is applied at different stages of chatbot lifetime (i.e.,
from early releases to maturity), we evaluate the AlphaBot on different sizes of training, validation,
and test sets. In particular, we split the AskGit dataset incrementally 10% each time, where this split
is used to train Rasa, and the rest are used as the validation and test sets. For example, we divide the
AskGit dataset into 10% for training and 90% for test and validation sets (45% each). Table 4 presents
the percentage (columns 1-3) for training, validation, and test sets, respectively. It is important to
emphasize that the ground truth of the validation set is not exposed to our approach, and we use
the same test set to evaluate both models, the baseline and AlphaBot_Rasa.
Results: Table 3 presents the number of correctly classified queries to the total number of queries
in that split. From the table, we find that AlphaBot classifies the intents for most of the queries
correctly across all splits. AlphaBot mislabels, in total, 13 unique cases (queries). Upon closer
examination of those queries, we find that the main reason for the misclassification of queries is
that they do not satisfy the conditions implemented in the LFs. Another reason is that there are
misspellings in the queries, which causes them to be misclassified. For example, “Which branch is
defualt out of the ones we have?” is misclassified as ListBranches intent instead of DefaultBranch
intent because the word ‘defualt’ is misspelled. Consequently, the LF of DefaultBranch intent returns
‘ABSTAIN’ as one of the conditions is not met (the existence of the word ‘default’) in the query.
This implies that practitioners need to consider typos when developing their LFs. In addition to
correctly labeling the queries, AlphaBot took less than a minute to label the users’ queries for
each split. This shows the amount of time saved compared to manually labeling user’s queries as
discussed in Section 2.

Next, we assess the impact of applying AlphaBot on the NLU’s performance. Table 4 presents the
performance of baseline and AlphaBot_Rasa and performance improvement on each split in terms
of F1-score. The results show that using AlphaBot improves Rasa’s performance across all splits
compared to the baseline, as shown in Table 4. Also, we notice that as the size of the training split
increases, the percentage of improvement decreases. More specifically, the peak in the performance
improvement (35.57%) occurs in the early releases of a chatbot with the lowest training set size
(split 10%). Interestingly, we find that applying AlphaBot at 20% training split (AlphaBot_Rasa)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:xiv Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

Table 4. Percentage improvement in F1-score of AlphaBot_Rasa compared to the baseline at different sizes of
training, test, and validation sets.

Training
split (%)

Testing
split (%)

Validation
split (%)

Baseline
F1-score (%)

AlphaBot_Rasa
F1-score (%)

Percentage
of improvement (%)

10 45 45 33.87 69.44 35.57
20 40 40 47.80 76.49 28.69
30 35 35 52.34 78.85 26.52
40 30 30 61.74 78.76 17.02
50 25 25 70.41 80.98 10.57
60 20 20 76.07 83.91 7.84
70 15 15 80.53 86.57 6.03
80 10 10 82.22 86.50 4.28
90 5 5 76.92 77.88 0.96

0 10 20 30 40 50 60 70
Number of applied LFs

10

0

10

20

30

40

50

60

Im
pr

ov
em

en
t 

in
 F

1-
sc

or
e 

(%
)

(a) 10% Training Split

0 10 20 30 40 50 60 70
Number of applied LFs

10

0

10

20

30

40

50

60

Im
pr

ov
em

en
t 

in
 F

1-
sc

or
e 

(%
)

(b) 30% Training Split

0 10 20 30 40 50 60 70
Number of applied LFs

10

0

10

20

30

40

50

60

Im
pr

ov
em

en
t 

in
 F

1-
sc

or
e 

(%
)

(c) 50% Training Split

Fig. 6. Analysis of performance trend in terms of F1-score when applying LFs in an additive manner.
achieves similar performance to the baseline at 50%. This is because, at 20%, AlphaBot correctly
labels 99.2% of queries in the validation set. Another observation is that using AlphaBot leads to
less performance improvement in the F1-score compared to the baseline when the chatbot becomes
more mature (i.e., trained on a high number of queries), where there is a 0.96% improvement in
terms of F1-score at split 90%. This is expected as the NLUs tend to have better performance if
trained on more queries [1]. Our findings show an advantage of using AlphaBot in improving the
NLU’s performance, especially when it has little training data.

AlphaBot improves the NLU’s performance, especially when it is applied at
the early stages of chatbot lifetime (35.57% improvement in F1-Score), and
the training data is limited. However, the improvement in the performance
decreases as the chatbot becomes more mature (i.e., trained on a large data set).

5.2 RQ2: What is the impact of the number of labeling functions on performance?
Motivation:Given that using AlphaBot improves the NLU’s performance, as shown in RQ1. There’s
no such thing as a free lunch; crafting the LFs to automate the labeling process requires effort and
domain expertise, though they are cheaper than hand-labeling the user’s queries regarding the
time needed. Therefore, in this research question, we want to examine the impact of the number
of implemented LFs on the NLUs’ performance. In other words, we want to examine how many

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:xv

LFs are needed to achieve acceptable performance in the NLU. This helps chatbot developers to
determine the number of required LFs to achieve the desired performance.
Approach: To accomplish this, we need to progressively assess the impact of adding LFs on Rasa’s
performance. Thus, we construct a set of LFs by randomly selecting one LF from our 70 LFs and
adding it to the set. The set contains all the 70 LFs that are randomly shuffled. We use the same
RQ1 splits to assess the impact of adding one LF at a time from the shuffled LFs list on Rasa’s
performance. More specifically, we apply the first LF in the LFs set to the queries in the validation
set and merge the labeled queries to the training dataset, we refer to the merged dataset as the
augmented dataset. Next, we retrain Rasa (AlphaBot_Rasa) on the augmented dataset and evaluate
AlphaBot_Rasa’s performance using the test set in the split. The impact of applying the LF is
measured through the difference in the performance between the (AlphaBot_Rasa) and the baseline
(Rasa’s performance before applying any LFs for that split). Then, we additively choose the next
LF from the shuffled LFs list to apply it to the queries in the validation set and repeat the same
evaluation process to measure the impact of adding more LFs on Rasa’s performance. We repeat
the same steps till all LFs in the LFs list are applied for that split. Since the LFs list is created
randomly, the order of applying the LFs might impact the NLU’s performance (e.g., applying the
LFs associated with intents that have more queries in the test set). To reduce the randomness effect
of the applied LFs order, we create another two randomly shuffled LFs lists and repeat the same
experiment. In total, we have 210 runs for 70 LFs in the three LFs lists for each split. To make our
study manageable, we perform our experiment using the 10%, 30%, and 50% training splits from
RQ1. We believe that the selected splits aligned with our study goal, helping chatbot developers
to improve the chatbot performance in the early releases of chatbot. For each split, we report the
average of all runs of the three LFs lists.
Results: Figure 6 presents the performance in terms of F1-score when applying LFs additively
on 10%, 30%, and 50% splits compared to the baseline. From the figure, we notice that adding
more LFs yields a performance increase. This happens because Rasa is trained on more correctly
labeled queries. In other words, applying more LFs leads to more labeled queries used to train Rasa.
Another observation is that Rasa’s performance falls in some cases even when more LFs are applied.
For example, in Figure 6b, the performance decreases when applying the 42st LF that adds four
correct training queries compared to the previous 41 LFs. One explanation for this behavior is that
there is randomness when training Rasa, as it is based on deep learning models used for intents
classification, which leads to a decrease in performance.

Moreover, we observe that applying more LFs on splits with fewer training data achieves better
performance improvement compared to splits with more training data. For example, Rasa shows
more performance improvement in the 10% training split compared to 30% and 50% splits, as shown
in Figure 6. Our findings highlight that it is worth developing more LFs at the early stages of the
chatbot lifetime as there is a substantial increase in the NLU’s performance as more LFs are applied
compared to when the chatbot becomes more mature, i.e. trained on more data. This is expected as
Rasa becomes more robust when it is trained on more data. This is aligned with our study goal to
support practitioners in improving the performance of their chatbots when they are trained on
fewer labeled queries (i.e., the early releases of the chatbot).

Overall, applying more LFs leads to better NLU’s performance. In case the NLU
is trained on fewer training queries, the increase in the performance is higher
compared to NLU trained with more queries.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:xvi Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

Table 5. Percentage of F1-score improvement when applying AlphaBot on Google Dialogflow.

Training
split (%)

Testing
split (%)

Validation
split (%)

Baseline
F1-score (%)

AlphaBot_Dialogflow
F1-score (%)

Percentage
of improvement (%)

10 45 45 54.84 83.31 28.47
30 35 35 73.56 84.65 11.09
50 25 25 81.46 84.79 3.33

0 10 20 30 40 50 60 70
Number of applied LFs

10

0

10

20

30

40

50

60

Im
pr

ov
em

en
t 

in
 F

1-
sc

or
e 

(%
) Dialogflow

Rasa

(a) 10% Training Split

0 10 20 30 40 50 60 70
Number of applied LFs

10

0

10

20

30

40

50

60

Im
pr

ov
em

en
t 

in
 F

1-
sc

or
e 

(%
) Dialogflow

Rasa

(b) 30% Training Split

0 10 20 30 40 50 60 70
Number of applied LFs

10

0

10

20

30

40

50

60

Im
pr

ov
em

en
t 

in
 F

1-
sc

or
e 

(%
) Dialogflow

Rasa

(c) 50% Training Split

Fig. 7. Results of applying the LFs additively on Dialogflow’s F1-score.

6 DISCUSSION
6.1 Google Dialogflow
We use the Rasa platform to evaluate AlphaBot as discussed in Section 3. In this section, we
want to examine whether our approach could improve other NLUs’ performance. Therefore, we
rerun our experiment using Dialogflow platform [18]. Dialogflow is a cloud-based NLU platform
developed by Google. Dialogflow supports more than 30 languages and can be integrated with
popular communication channels [18]. In addition, it provides a graphical user interface (GUI) and
API to facilitate training and testing of the NLU. Moreover, it has been used by prior works to
develop SE chatbots [2, 41, 44].

To evaluate the impact of AlphaBot on Dialogflow’s performance, we use the same experiment
settings, dataset, and splits discussed in RQ1 and RQ2. In particular, we assess Dialogflow’s perfor-
mance when using AlphaBot (RQ1) and evaluate the impact of adding more LFs on the performance
trend (RQ2). It is worth noting that we assess Dialogflow’s performance on 10%, 30%, and 50%
training splits. This is because it is expensive to run our experiment on all splits using a cloud-based
NLU platform (i.e., Dialogflow). Another reason for selecting splits with a few training queries is to
assess the main goal of our approach, helping chatbot practitioners boost the chatbot’s performance
at early releases. Also, allow developers to focus on the core functionalities of the chatbot rather
than annotating users’ queries.

Table 5 presents F1-scores for Baseline (Dialogflow before applyingAlphaBot), AlphaBot_Dialogflow,
and the percentage of improvement after applying AlphaBot. Similar to RQ1 results, AlphaBot
increases the performance of Dialogflow in terms of F1-score for all splits. In particular, the peak
performance increase is at splits with fewer training queries (i.e., 10% training split) and the im-
provement decreases as Dialogflow is trained on more queries (50% training split) as it becomes
more robust. Figure 7 shows the impact of applying LFs additively on the Dialogflow’s performance.
Overall, we notice that the performance trend increases as more LFs are applied. Another observa-
tion is that there is more performance improvement when applying more LFs on splits with fewer

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:xvii

Table 6. The results of the ablation study on the number of queries labeled correctly.

 
 
 
 

Split w/o Data Preprocessing  w/o Query Information Extractor AlphaBot 

Training Validation Testing 

Correctly labeled / 
total no. of queries 

(%) 
Abandoned 

(%) 

Correctly labeled / 
total no. of queries 

(%) 
Abandoned 

(%) 

Correctly labeled / 
total no. of queries 

(%) 
Abandoned 

(%) 

10 45 45 1/39 (0.02) 88.4 125/128 (97.7) 62.0 263/267 (98.5) 20.8 

20 40 40 2/35 (0.06) 88.3 102/108 (94.4) 64 235/237 (99.2) 21 

30 35 35 0/35 (0) 86.6 102/104 (98.1) 60.3 204/208 (98.1) 20.6 

40 30 30 1/29 (0.03) 87.1 79/81 (97.5) 64 176/178 (98.8) 20.9 

50 25 25 0/20 (0) 89.3 70/75 (93.3) 59.9 147/148 (99.3) 20.9 

60 20 20 0/18 (0) 88 45/48 (93.6) 68 118/119 (99.2) 20.7 

70 15 15 1/29 (0.03) 74.1 39/40 (97.5) 64.3 86/88 (97.7) 21.4 

80 10 10 0/8 (0) 89.3 32/32 (100) 57.3 59/59 (100) 21.3 

90 5 5 0/7 (0) 69.6 14/14 (100) 39.1 8/8 (100) 65.2 

 

training queries. We have the same observations for Rasa as discussed in RQ2. Our findings show
that our approach could be generalized to other NLU platforms.

6.2 Coldstart Scenario
In our evaluation of AlphaBot, the first two authors developed the LFs by manually examining three
random queries for every intent in the dataset and the extracted information (e.g., entity type) by
the query information extractor component to devise the LFs, as discussed in Section 4.3. However,
the developers might have a list of intents for their chatbot, but they have not obtained any users’
queries yet (i.e., a cold start). This scenario is where developers are about to start building their
chatbot. This raises a question: Can practitioners still use our approach in the cold start scenario?
The short answer is yes. AlphaBot’s users can leverage their domain knowledge and expertise to
develop LFs. For example, in the ’StarCount’ intent, a practitioner might create an LF that checks if
the query contains terms such as (’star’ or ’popularity’) and (’count’ or ’how many’), anticipating
these elements in all queries related to this intent. However, the accuracy and coverage of the
developed LFs in a cold start scenario might be lower compared to developing LFs with access
to users’ queries posed to the chatbot. This is because users may ask questions that do not align
with the heuristics specified in the LFs, resulting in the LFs abstaining from labeling such queries.
For example, the query “What is the reputation of the repository?” does not match the heuristics
defined in the LFs (e.g., ‘star’ or ‘popularity’), leading the LF to return ‘ABSTAIN’. Therefore, we
recommend AlphaBot’s users to add more LFs as their chatbot evolves by examining the abandoned
queries file generated by AlphaBot, as discussed in Section 3.3. Overall, AlphaBot can save time
and resources during a cold start scenario by minimizing the need for annotating users’ queries. In
other words, users only need to review abandoned queries (a portion of the dataset) to develop
additional LFs.

6.3 Ablation Study
To evaluate the impact of the Data Preprocessing component and the Query Information Extractor
component on AlphaBot’s performance, we conducted an ablation study. Specifically, we reran
AlphaBot by initially removing the Data Preprocessing component (w/o Data Preprocessing) and
keeping the Query Information Extractor component to label the users’ queries in the validation
set. Subsequently, we ran the same experiment again by excluding the Query Information Extractor

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:xviii Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

component (w/o Query Information Extractor) and keeping the Data Preprocessing component. It
is important to note that we performed the experiment across different splits (e.g., 10% training,
45% validation, and 45% testing) used in RQ1. Furthermore, we did not exclude the Intent Labeler
component as it is the core component that performs the labeling to the user’s query. Table 6
presents the correctly labeled queries and abandoned queries (abstain) when including all the
components (i.e., Data Preprocessing, Query Information Extractor, and Intent Labeler), excluding
the Data Preprocessing component (w/o Data Preprocessing), and excluding the Query Information
Extractor component (w/o Query Information Extractor). From the table, we observe that Data
Preprocessing plays a major role in labeling queries. In other words, AlphaBot’s performance is
highly impacted by the Data Preprocessing component. Upon closer examination of the results,
we find that chatbot users enters the same word in multiple ways, making them different from
the heuristics used to develop LFs. For example, the “number_of_commits_in_branch” LF fails to
label the query “how many commits are in the documentation branch” because the heuristic used
in the LF is ‘commit’ and the query contains ‘commits’. On the other hand, removing the Query
Information Extractor Component from AlphaBot has a slight to negligible impact on the accuracy
of labeling the user’s queries compared to including all components (i.e., AlphaBot). However, when
running AlphaBot without the Query Information Extractor component (w/o Query Information
Extractor), its coverage in terms of abandoned queries is reduced. For example, in the Training split
10%, although AlphaBot and w/o Query Information Extractor achieve similar accuracy in labeling
queries, the w/o Query Information Extractor labeled 38% of queries, while AlphaBot labeled 80%
of queries. The Query Information Extractor component extracts information from queries such
as Entities, which helps to identify the intent [1]. Our results show that using all components in
AlphaBot achieves both higher accuracy and coverage.

7 THREATS TO VALIDITY
Internal Validity:Concerns confounding factors that could have influenced our results.We develop
LFs to label queries using the collected features discussed in Section 3, which might introduce
human bias in crafting those LFs. To mitigate this bias, the first two authors independently develop
the LFs for all intents in the dataset (i.e., 52 intents) and then discuss each LF to reach a consensus on
the best LFs that yield to the best results. In our study, we developed LFs using keyword searching
and pattern matching. Developing LF using other weak supervision forms (e.g., distant supervision)
might change our results. Nevertheless, our developed LFs correctly labeled more than 99% of
queries as shown in RQ1. Moreover, we plan to evaluate the performance of other weak supervision
forms in labeling queries.We use regular expressions in the Query Information Extractor component
to extract entities from the users’ queries. Using Named Entity Recognition (NER) models might
lead to different results. However, upon closer examination of the results, the Query Information
Extractor correctly extracted 97.9% of entities from the user’s queries which makes us confident in
the use of the regular expressions to extract entities.

In this work, we focus on single-intent queries, as the majority of publicly available datasets for
SE chatbots predominantly consist of single intents [1, 2, 14, 19, 31]. Furthermore, as this study
represents the first attempt to propose a weak supervision-based approach to automate the query
annotation process for SE chatbots, concentrating on single-intent queries provides a controlled
environment for the assessment and improvement of AlphaBot’s capabilities in labeling users’
queries. We plan in the future to evaluate our approach on datasets that contain multi-intent
queries.

Another threat to internal validity is that the NLUs use deep learning models, which introduces
randomness in the training process of these models. Thus, it might bias the results and conclusions
in our study. To alleviate this threat, we repeat the experiment with the same settings twice and

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:xix

report the average of the two runs in Section 5. Finally, we generate random orders of LFs lists in
RQ2. Applying different orders of LFs might lead to different results. Therefore, we perform the
same experiment using three randomly shuffled LFs lists and report the averages of those three
experiments.

External Validity: Concerns about the generalization of our findings. We use the AskGit dataset
to evaluate AlphaBot. Thus, our results may not generalize to other datasets. Furthermore, the
developed LFs might not be generalizable to all queries that are semantically similar but syntactically
different. To the best of our knowledge, this is the only publicly available comprehensive dataset
that contains enough queries (749 queries) and intents (52 intents) for an SE chatbot, which enables
us to evaluate AlphaBot’s performance in a large dataset. Moreover, it enables us to evaluate
the AlphaBot’s applicability by applying it to a chatbot in production. Since AlphaBot achieves
promising results, we plan to put it into practice by integrating it with AskGit.

To evaluate the impact of using AlphaBot on NLU’s performance, we perform a case study using
the Rasa and Dialogflow platforms. This might affect the generalizability of our results. However,
Rasa and Dialogflow are commonly used by chatbot developers and researchers to develop SE
chatbots [2, 19, 31, 41, 44]. Also, the selected NLUs cover the open-source and closed-source
NLUs, which increase the generalizability of our results. That said, we plan (and encourage other
researchers) to evaluate AlphaBot using more NLUs and datasets.

8 RELATEDWORK
This paper proposes a weak supervision-based approach that labels the user’s queries for chatbots
in the SE domain. Thus, we divide the prior work into two areas; work related to weak supervision
and work related to chatbots in the SE domain.

8.1 Chatbots
Several studies developed chatbots in different domains such as healthcare [12], financial [39],
and education [16]. Recently, several studies proposed chatbots to assist software practitioners
in their daily development tasks [2, 13, 19, 31, 54, 57, 72]. Abdellatif et al. [2] developed MSRBot
using Google Dialogflow to answer questions related to the software project (e.g., “Which commit
fixes bug-5281?”). Lin et al. [31] leveraged Rasa to implement MSABot, which helps practitioners
maintain microservices. Dominic et al. [19] developed a chatbot using Rasa to assist newcomers
in the onboarding process to new projects. Toxtli et al. [65] developed TaskBot using Microsoft
Language Understanding Intelligent Service (LUIS) to help software practitioners manage their
tasks (e.g., task reminders).
The increased attention to SE chatbots and the challenges of collecting data to train chat-

bots [2, 19] motivates our study; to help practitioners enhance the chatbot performance in intents
classification and save resources by automating the annotation process of user’s input to the chatbot.
That said, our study differs in that we aim to support chatbot practitioners, and we do not develop
chatbots.

8.2 Weak Supervision
Recently, many researchers use weak supervision for text classification [34, 45, 55, 59, 60]. For
example, Shu et al. [60] used weak supervision to identify the intent of emails. They use the weak
supervision to enhance intent detection in emails. Rao et al. [45] proposed a weak supervision model
to classify the intent of user’s search queries. They reported the efficacy of the weak supervision-
based approach in improving the accuracy (more than 76%) of the models. There are a number of
studies that use weak supervision to improve the NLU’s performance in chatbots [24, 40]. Hancock
et al. [24] proposed a self-feeding chit-chat chatbot that adds the users’ queries to the chatbot’s

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



105:xx Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

training dataset if the user is satisfied with its response. They declared that using weak supervision
by learning from dialogue with a self-feeding chatbot enhances accuracy, despite the amount of
traditional supervision. Mallinar et al. [32] presented a framework that enables annotators to search
for user’s queries in the customer service chatlog related to a certain intent. Then, the annotator
verifies the labels for the retrieved queries. Finally, the framework extends the labels to the rest of
the queries in the set. They evaluated the proposed approach on a customer service chatbot trained
on six intents. The results show that the proposed approach improves the chatbot’s performance.
Oramas et al. [40] developed a weak supervision-based approach to label the entities in the voice
transcribed queries in the music domain. They found that their approach outperforms smaller
amounts of hand-annotated data.

While these studies help address the problem of manually labeling the data, none of these methods
targeted chatbots that operate in the SE domain. Moreover, the proposed approaches are evaluated
using a limited number of intents. To the best of our knowledge, AlphaBot is the first to use weak
supervision to boost NLU’s performance for SE chatbots. Also, our performance evaluation covers
open-source (Rasa) and close-source (Dialogflow) NLUs. We examine the impact of the number of
labeling functions on the NLU’s performance, which have not been previously studied by prior
work. We believe our work complements prior work in applying weak supervision to a new domain
using two popular NLU platforms (i.e., Rasa and Dialogflow). Moreover, we highlight some of the
important features (e.g., entity and POS) that contribute to identifying the intent of a query in the
SE domain.

9 CONCLUSION
Chatbots are tremendously used to help software practitioners in their development tasks. Every
chatbot relies on the NLU component to understand the user’s input. Practitioners reported that
they struggle to train NLUs due to the lack of data. One way to have more data is to train the
NLUs on users’ queries posed to the chatbot. However, annotating such queries requires dedicated
effort and time. To help chatbot practitioners in this tedious and time-consuming task, we propose
AlphaBot, an approach that annotates the user’s queries using weak supervision. We evaluate the
proposed approach using a dataset composed of 749 queries representing 52 intents. Our results
show that AlphaBot helps chatbot practitioners to boost the NLU’s performance at early releases
of their chatbots (i.e., fewer training queries). In particular, we find that our approach increases
the NLU’s performance (0.96% - 35%) F1-score compared to the baseline. Furthermore, the results
show that AlphaBot annotates, on average, 99% of queries correctly. Finally, we find that adding
more labeling functions increases NLU’s performance, especially when the NLU is trained on fewer
training queries.

In the future, we plan in the future to evaluate AlphaBot using more NLUs and SE datasets (e.g.,
code related questions). Our approach achieves high performance in labeling queries, as discussed
in RQ1 and RQ2. The knowledge and expertise required to develop LFs is the bottleneck of its use.
Developing high-quality LFs is a resource-intensive task. Therefore, we intend (and encourage
others) to investigate the impact of using different types of weak supervision forms (e.g., using
pre-trained models) on the NLU’s performance to save time in developing LFs. Furthermore, we
plan to propose an approach that creates LFs based on the input data and can be integrated with
AlphaBot. In addition to reduces the cost and time of creating LFs, it enables chatbot developers to
focus on the critical tasks of their chatbot implementation rather than annotating data.

10 DATA AVAILABILITY
We make the source code of the approach, datasets, and results publicly available [6] to facilitate
replication and accelerate future research in the area.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.



A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:xxi

REFERENCES
[1] Ahmad Abdellatif, Khaled Badran, Diego Costa, and Emad Shihab. 2021. A Comparison of Natural Language Under-

standing Platforms for Chatbots in Software Engineering. IEEE Transactions on Software Engineering (TSE) (2021),
1–1.

[2] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. 2020. MSRBot: Using Bots to Answer Questions from Software
Repositories. Empirical Software Engineering (EMSE) 25 (2020), 1834–1863. Issue 3.

[3] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. 2021. AskGit. https://askgit.io/. (Accessed on 12/07/2023).
[4] Ahmad Abdellatif, Diego Elias Costa, Khaled Badran, Rabe Abdelkareem, and Emad Shihab. 2020. Challenges in

Chatbot Development: A Study of Stack Overflow Posts. In Proceedings of the 17th International Conference on Mining
Software Repositories (MSR’20). To Appear.

[5] Enrique Alfonseca, Katja Filippova, Jean-Yves Delort, and Guillermo Garrido. 2012. Pattern Learning for Relation
Extraction with a Hierarchical Topic Model. In Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics: Short Papers - Volume 2 (Jeju Island, Korea) (ACL ’12). Association for Computational Linguistics,
USA, 54–59.

[6] Anonymous. 2023. A Weak Supervision-based Approach to Improve Chatbots for Code Repositories. https://zenodo.
org/records/10714394. (Accessed on 28/09/2023).

[7] Chidubem Arachie and Bert Huang. 2021. A General Framework for Adversarial Label Learning. Journal of Machine
Learning Research 22, 118 (2021), 1–33.

[8] Julie Ask, Michael Facemire, and Andrew Hogan. 2016. The State Of Chatbots. Forrester.com report 20 (2016).
[9] Stephen H Bach, Bryan He, Alexander Ratner, and Christopher Ré. 2017. Learning the structure of generative models

without labeled data. In International Conference on Machine Learning. PMLR, 273–282.
[10] Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia, Souvik Sen, Alex Ratner,

Braden Hancock, Houman Alborzi, Rahul Kuchhal, Chris Ré, and Rob Malkin. 2019. Snorkel DryBell: A Case Study in
Deploying Weak Supervision at Industrial Scale. In Proceedings of the 2019 International Conference on Management of
Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 362–375.

[11] Chetashri Bhadane, Hardi Dalal, and Heenal Doshi. 2015. Sentiment Analysis: Measuring Opinions. Procedia Computer
Science 45 (2015), 808–814. International Conference on Advanced Computing Technologies and Applications
(ICACTA).

[12] Urmil Bharti, Deepali Bajaj, Hunar Batra, Shreya Lalit, Shweta Lalit, and Aayushi Gangwani. 2020. Medbot: Conversa-
tional Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19. In 2020 5th International
Conference on Communication and Electronics Systems (ICCES). 870–875.

[13] Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-Aware Conversational Developer Assistants. In
Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 993–1003.

[14] Daniel Braun, Adrian Hernandez Mendez, Florian Matthes, and Manfred Langen. 2017. Evaluating Natural Language
Understanding Services for Conversational Question Answering Systems. In Proceedings of the 18th Annual SIGdial
Meeting on Discourse and Dialogue. Association for Computational Linguistics, Saarbrücken, Germany, 174–185.

[15] Metz C. 2016. Google’s Hand-Fed AI Now Gives Answers, Not Just Search Results. https://www.wired.com/2016/11/
googles-search-engine-can-now-answer-questions-human-help/. (Accessed on 08/02/2023).

[16] Fabio Clarizia, Francesco Colace, Marco Lombardi, Francesco Pascale, and Domenico Santaniello. 2018. Chatbot: An
Education Support System for Student. In Cyberspace Safety and Security, Arcangelo Castiglione, Florin Pop, Massimo
Ficco, and Francesco Palmieri (Eds.). Springer International Publishing, Cham, 291–302.

[17] Allan Peter Davis, Thomas C Wiegers, Phoebe M Roberts, Benjamin L King, Jean M Lay, Kelley Lennon-Hopkins,
Daniela Sciaky, Robin Johnson, Heather Keating, Nigel Greene, et al. 2013. A CTD–Pfizer collaboration: manual
curation of 88 000 scientific articles text mined for drug–disease and drug–phenotype interactions. Database 2013
(2013).

[18] Dialogflow. 2021. Dialogflow Official Website. https://dialogflow.cloud.google.com/. (Accessed on 01/08/2023).
[19] James Dominic, Jada Houser, Igor Steinmacher, Charles Ritter, and Paige Rodeghero. 2020. Conversational Bot for

Newcomers Onboarding to Open Source Projects. In Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops (Seoul, Republic of Korea) (ICSEW’20). Association for Computing Machinery, New
York, NY, USA, 46–50.

[20] Jason A. Fries, Ethan Steinberg, Saelig Khattar, Scott L. Fleming, Jose Posada, Alison Callahan, and Nigam H. Shah. 2021.
Ontology-driven weak supervision for clinical entity classification in electronic health records. Nature Communications
12, 1 (2021), 2017.

[21] Xin Geng and Kate Smith-Miles. 2009. Incremental Learning. Springer US, Boston, MA, 731–735.
[22] Sebastian Romy Gomes, Sk Golam Saroar, Md Mosfaiul, Alam Telot, Behroz Newaz Khan, Amitabha Chakrabarty, and

Moin Mostakim. 2017. A comparative approach to email classification using Naive Bayes classifier and hidden Markov

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.

https://askgit.io/
https://zenodo.org/records/10714394
https://zenodo.org/records/10714394
https://www.wired.com/2016/11/googles-search-engine-can-now-answer-questions-human-help/
https://www.wired.com/2016/11/googles-search-engine-can-now-answer-questions-human-help/
https://dialogflow.cloud.google.com/


105:xxii Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

model. In 2017 4th International Conference on Advances in Electrical Engineering (ICAEE). 482–487.
[23] GoodRebels. [n. d.]. The impact of conversational bots in the customer experience. https://www.goodrebels.com/the-

impact-of-conversational-bots-in-the--experience/. (Accessed on 12/07/2023).
[24] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. 2019. Learning from dialogue after

deployment: Feed yourself, chatbot! arXiv preprint arXiv:1901.05415 (2019).
[25] Howe and Jeff. 2006. The Rise of Crowdsourcing. Wired 14 (01 2006).
[26] Mia Mohammad Imran, Yashasvi Jain, Preetha Chatterjee, and Kostadin Damevski. 2023. Data Augmentation for

Improving Emotion Recognition in Software Engineering Communication. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Association for Computing
Machinery, New York, NY, USA, Article 29, 13 pages. https://doi.org/10.1145/3551349.3556925

[27] Zhao Jianqiang and Gui Xiaolin. 2017. Comparison Research on Text Pre-processing Methods on Twitter Sentiment
Analysis. IEEE Access 5 (2017), 2870–2879.

[28] jsphdnl. 2017. nlp - Conversational Data for building a chat bot - Stack Overflow. https://stackoverflow.com/questions/
45821517/conversational-data-for-building-a-chat-bot. (Accessed on 08/14/2023).

[29] Pensive Knave. 2021. reactjs - How to create CSS underline which partially covers the word? - Stack Overflow. https:
//stackoverflow.com/questions/67694697/how-to-create-css-underline-which-partially-covers-the-word. (Accessed
on 08/25/2023).

[30] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software Bots. IEEE Software 35, 1 (2018), 18–23.
[31] Chun-Ting Lin, Shang-Pin Ma, and Yu-Wen Huang. 2020. MSABot: A Chatbot Framework for Assisting in the

Development and Operation of Microservice-Based Systems. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops (Seoul, Republic of Korea) (ICSEW’20). Association for Computing
Machinery, New York, NY, USA, 36–40.

[32] Neil Mallinar, Abhishek Shah, Rajendra Ugrani, Ayush Gupta, Manikandan Gurusankar, Tin Kam Ho, Q Vera Liao,
Yunfeng Zhang, Rachel KE Bellamy, Robert Yates, et al. 2019. Bootstrapping conversational agents with weak
supervision. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 9528–9533.

[33] Gideon S. Mann and Andrew McCallum. 2010. Generalized Expectation Criteria for Semi-Supervised Learning with
Weakly Labeled Data. Journal of Machine Learning Research 11, 32 (2010), 955–984.

[34] Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. 2018. Weakly-Supervised Neural Text Classification. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Management (Torino, Italy) (CIKM
’18). Association for Computing Machinery, New York, NY, USA, 983–992.

[35] Microsoft. 2021. Language Understanding - Bot Service. https://docs.microsoft.com/en-us/azure/bot-service/
bot-builder-concept-luis?view=azure-bot-service-4.0#best-practices-for-language-understanding. (Accessed on
08/12/2023).

[36] Microsoft. 2021. LUIS (Language Understanding) - Cognitive Services. https://www.luis.ai/. (Accessed on 12/09/2023).
[37] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant Supervision for Relation Extraction without

Labeled Data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2 (Suntec, Singapore) (ACL ’09).
Association for Computational Linguistics, USA, 1003–1011.

[38] Eadicicco L. Baidu’s Andrew Ng. 2017. on the future of artificial intelligence. https://time.com/4631730/andrew-ng-
artificial-intelligence-2017/. (Accessed on 07/24/2023).

[39] T. Okuda and S. Shoda. 2018. AI-based chatbot service for financial industry. Fujitsu Scientific and Technical Journal 54
(04 2018), 4–8.

[40] Sergio Oramas, Massimo Quadrana, and Fabien Gouyon. 2021. Bootstrapping a Music Voice Assistant with Weak
Supervision. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies: Industry Papers. Association for Computational Linguistics, Online, 49–55.

[41] Elahe Paikari, JaeEun Choi, SeonKyu Kim, Sooyoung Baek, MyeongSoo Kim, SeungEon Lee, ChaeYeon Han, YoungJae
Kim, KaHye Ahn, Chan Cheong, and André van der hoek. 2019. A Chatbot for Conflict Detection and Resolution. In
2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE). 29–33.

[42] Jerrod Parker and Shi Yu. 2021. Named Entity Recognition throughDeep Representation Learning andWeak Supervision.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Association for Computational Linguistics,
Online, 3828–3839.

[43] R. Polikar, L. Upda, S.S. Upda, and V. Honavar. 2001. Learn++: an incremental learning algorithm for supervised neural
networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 31, 4 (2001), 497–508.

[44] Ilham A. Qasse, Shailesh Mishra, and Mohammad Hamdaqa. 2021. iContractBot: A Chatbot for Smart Contracts’
Specification and Code Generation. In Proceedings of the IEEE/ACM 43th International Conference on Software Engineering
Workshops. Association for Computing Machinery, New York, NY, USA.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.

https://www.goodrebels.com/the-impact-of-conversational-bots-in-the--experience/
https://www.goodrebels.com/the-impact-of-conversational-bots-in-the--experience/
https://doi.org/10.1145/3551349.3556925
https://stackoverflow.com/questions/45821517/conversational-data-for-building-a-chat-bot
https://stackoverflow.com/questions/45821517/conversational-data-for-building-a-chat-bot
https://stackoverflow.com/questions/67694697/how-to-create-css-underline-which-partially-covers-the-word
https://stackoverflow.com/questions/67694697/how-to-create-css-underline-which-partially-covers-the-word
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0##best-practices-for-language-understanding
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0##best-practices-for-language-understanding
https://www.luis.ai/
https://time.com/4631730/andrew-ng-artificial-intelligence-2017/
https://time.com/4631730/andrew-ng-artificial-intelligence-2017/


A Weak Supervision-Based Approach to Improve Chatbots for Code Repositories 105:xxiii

[45] Nikitha Rao, Chetan Bansal, and Joe Guan. 2021. Search4Code: Code Search Intent Classification Using Weak
Supervision. In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 575–579.

[46] Rasa. [n. d.]. Duckling. https://duckling.wit.ai/. (Accessed on 08/14/2023).
[47] Rasa. 2021. Introduction to Rasa X. https://rasa.com/docs/rasa-x/. (Accessed on 07/29/2023).
[48] RASA. 2021. Open source conversational AI | Rasa. https://rasa.com/. (Accessed on 12/09/2023).
[49] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré. 2017. Snorkel: Rapid

training data creation with weak supervision. In Proceedings of the VLDB Endowment. International Conference on Very
Large Data Bases, Vol. 11. NIH Public Access, 269.

[50] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré. 2017. Snorkel: Rapid
Training Data Creation with Weak Supervision. Proc. VLDB Endow. 11, 3 (Nov. 2017), 269–282.

[51] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré. 2020. Snorkel: Rapid
training data creation with weak supervision. The VLDB Journal 29, 2 (2020), 709–730.

[52] Daniele Ravì, Charence Wong, Fani Deligianni, Melissa Berthelot, Javier Andreu-Perez, Benny Lo, and Guang-Zhong
Yang. 2017. Deep Learning for Health Informatics. IEEE Journal of Biomedical and Health Informatics 21, 1 (2017), 4–21.

[53] Georgios Rizos, Konstantin Hemker, and Björn Schuller. 2019. Augment to Prevent: Short-Text Data Augmentation in
Deep Learning for Hate-Speech Classification. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (Beijing, China) (CIKM ’19). Association for Computing Machinery, New York, NY, USA,
991–1000. https://doi.org/10.1145/3357384.3358040

[54] Ricardo Romero, Esteban Parra, and Sonia Haiduc. 2020. Experiences Building an Answer Bot for Gitter. In Proceedings
of the IEEE/ACM 42nd International Conference on Software EngineeringWorkshops (Seoul, Republic of Korea) (ICSEW’20).
Association for Computing Machinery, New York, NY, USA, 66–70.

[55] Massimo Ruffolo. and Francesco Visalli. 2020. A Weak-supervision Method for Automating Training Set Creation
in Multi-domain Aspect Sentiment Classification. In Proceedings of the 12th International Conference on Agents and
Artificial Intelligence - Volume 2: ICAART,. INSTICC, SciTePress, 249–256.

[56] V. Selvi, S. Saranya, K. Chidida, and R. Abarna. 2019. Chatbot and bullyfree Chat. In 2019 IEEE International Conference
on System, Computation, Automation and Networking (ICSCAN). 1–5.

[57] Dragos Şerban, Bart Golsteijn, Ralph Holdorp, and Alexander Serebrenik. 2021. SAW-BOT: Proposing Fixes for Static
Analysis Warnings with GitHub Suggestions. InWorkshop on Bots in Software Engineering. IEEE Computer Society,
United States.

[58] Sheri. 2020. python - Intent classification for Chatbot - Stack Overflow. https://stackoverflow.com/questions/62970861/
intent-classification-for-chatbot. (Accessed on 09/05/2023).

[59] Xiaoming Shi, Haifeng Hu, Wanxiang Che, Zhongqian Sun, Ting Liu, and Junzhou Huang. 2020. Understanding
Medical Conversations with Scattered Keyword Attention and Weak Supervision from Responses. Proceedings of the
AAAI Conference on Artificial Intelligence 34, 05 (Apr. 2020), 8838–8845.

[60] Kai Shu, Subhabrata Mukherjee, Guoqing Zheng, Ahmed Hassan Awadallah, Milad Shokouhi, and Susan Dumais. 2020.
Learning with Weak Supervision for Email Intent Detection. Association for Computing Machinery, New York, NY, USA,
1051–1060.

[61] Spacy. 2021. Industrial-strength Natural Language Processing in Python. https://spacy.io/. (Accessed on 01/09/2023).
[62] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Productivity One Bot at a Time. In Proceedings

of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle, WA, USA)
(FSE 2016). Association for Computing Machinery, New York, NY, USA, 928–931.

[63] Snorkel Team. 2020. An Overview of Weak Supervision. https://www.snorkel.org/blog/weak-supervision. (Accessed
on 07/17/2023).

[64] Snorkel Team. 2020. Snorkel Intro Tutorial: Data Labeling. https://www.snorkel.org/use-cases/01-spam-tutorial.
(Accessed on 07/09/2023).

[65] Carlos Toxtli, Andrés Monroy-Hernández, and Justin Cranshaw. 2018. Understanding Chatbot-Mediated Task Manage-
ment. Association for Computing Machinery, New York, NY, USA.

[66] Kieu Tran. 2020. nlp - Building a chatbot about literary novel - Stack Overflow. https://stackoverflow.com/questions/
64007306/building-a-chatbot-about-literary-novel. (Accessed on 07/16/2023).

[67] RASA. 2021. Incremental Training. https://rasa.com/docs/rasa/next/migration-guide#incremental-training. (Accessed
on 11/08/2023).

[68] S Vijayarani, Ms J Ilamathi, Ms Nithya, et al. 2015. Preprocessing techniques for text mining-an overview. International
Journal of Computer Science & Communication Networks 5, 1 (2015), 7–16.

[69] Peilin Yu, Tiffany Ding, and Stephen H Bach. 2021. Learning from Multiple Noisy Partial Labelers. arXiv preprint
arXiv:2106.04530 (2021).

[70] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. 2011. A Survey of Crowdsourcing Systems. In 2011 IEEE Third
International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.

https://duckling.wit.ai/
https://rasa.com/docs/rasa-x/
https://rasa.com/
https://doi.org/10.1145/3357384.3358040
https://stackoverflow.com/questions/62970861/intent-classification-for-chatbot
https://stackoverflow.com/questions/62970861/intent-classification-for-chatbot
https://spacy.io/
https://www.snorkel.org/blog/weak-supervision
https://www.snorkel.org/use-cases/01-spam-tutorial
https://stackoverflow.com/questions/64007306/building-a-chatbot-about-literary-novel
https://stackoverflow.com/questions/64007306/building-a-chatbot-about-literary-novel
https://rasa.com/docs/rasa/next/migration-guide##incremental-training


105:xxiv Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab

Computing. 766–773.
[71] Ce Zhang, Christopher Ré, Michael Cafarella, Christopher De Sa, Alex Ratner, Jaeho Shin, Feiran Wang, and Sen Wu.

2017. DeepDive: Declarative Knowledge Base Construction. Commun. ACM 60, 5 (apr 2017), 93–102.
[72] N. Zhang, Q. Huang, X. Xia, Y. Zou, D. Lo, and Z. Xing. 2020. Chatbot4QR: Interactive Query Refinement for Technical

Question Retrieval. IEEE Transactions on Software Engineering (2020), 1–1.
[73] Zhi-Hua Zhou. 2017. A brief introduction to weakly supervised learning. National Science Review 5, 1 (08 2017), 44–53.

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 105. Publication date: July 2024.


	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 Weak Supervision

	3 AlphaBot
	3.1 Data Preprocessing
	3.2 Query Information Extractor
	3.3 Intent Labeler

	4 Evaluation Setup
	4.1 Dataset
	4.2 NLU Platform
	4.3 Experiment Settings
	4.4 Performance Evaluation

	5 Results
	5.1 RQ1: Does AlphaBot improve the NLU's performance?
	5.2 RQ2: What is the impact of the number of labeling functions on performance?

	6 Discussion
	6.1 Google Dialogflow
	6.2 Coldstart Scenario
	6.3 Ablation Study

	7 Threats to Validity
	8 Related Work
	8.1 Chatbots
	8.2 Weak Supervision

	9 Conclusion
	10 Data Availability
	References

